IN VITRO ASSESSMENT OF EXCITATION-CONTRACTION COUPLING FOR PREDICTING PRO-ARRHYTHMIC **RISK IN IPSC-DERIVED VENTRICULAR CARDIOMYOCYTES**

Priyanka Dutta-Passecker¹, George Gibbons¹, Krisztina Juhasz², Zoe Allen¹, Ying Shao¹, Sonja Stölzle-Feix², Corina Bot⁴, Ulrich Thomas² Leo Doerr², Matthias Beckler², Niels Fertig², Yichen Shi¹

¹Axol Bioscience Ltd., Cambridge, UK, support@axolbio.com; ²Nanion Technologies, Munich, Germany, ⁴Nanion Technologies Inc., Livingston, NJ, USA

Introduction

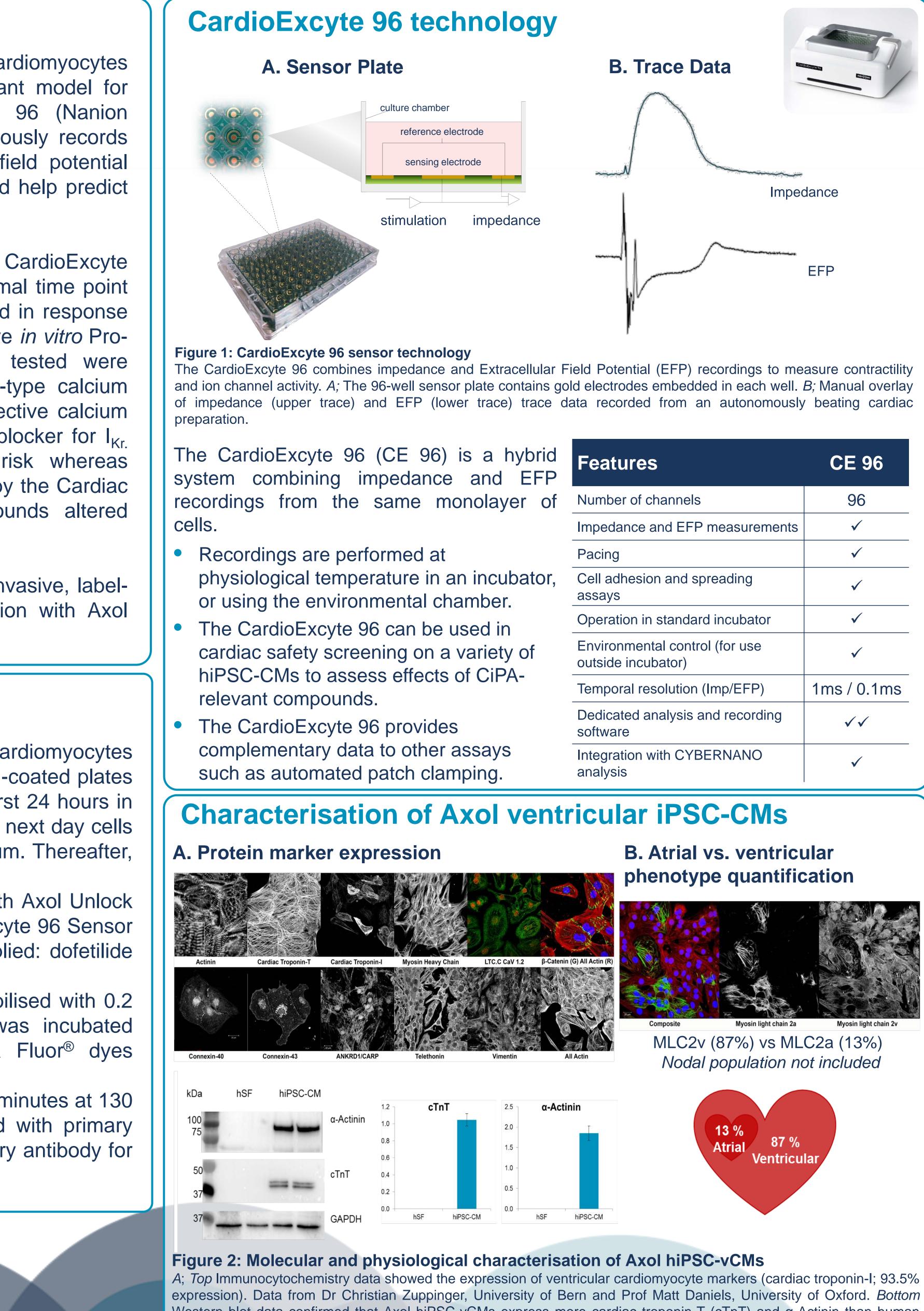
Human induced pluripotent stem cell-derived ventricular cardiomyocytes (hiPSC-vCMs) (Axol Bioscience) offer a physiologically relevant model for predictive toxicology screening in vitro. The CardioExcyte 96 (Nanion Technologies) is a hybrid screening instrument that simultaneously records cell contractility (impedance) and the extracellular electrical field potential (EFP) in a 96-well plate. Used in combination these tools could help predict the risk of human clinical pro-arrhythmias more accurately.

Here we present data on the optimisation of hiPSC-vCMs on the CardioExcyte 96. We determined seeding parameters and identified the optimal time point for analysis. Excitation-contraction coupling was then assessed in response to three standard reference compounds from the Comprehensive in vitro Proarrythmia Assay (CiPA) guidelines. The three compounds tested were verapamil, a mixed ion channel blocker acting upon both L-type calcium channels (I_{CaV}) and potassium channels (I_{Kr}); nifedipine, a selective calcium channel (I_{CaV}) blocker; and dofetilide, a selective ion channel blocker for I_{Kr} Both verapamil and nifedipine exhibit low pro-arrhythmic risk whereas dofetilide is classified as a high risk pro-arrhythmic compound by the Cardiac Safety Consortium. The addition of each of these compounds altered contractility and electrical excitation in the hiPSC-vCMs.

Here we have demonstrated that the CardioExcyte 96, a non-invasive, labelfree, high temporal resolution tool may be used in conjunction with Axol hiPSC-vCMs to predict pro-arrythmic risk *in vitro*.

Materials and methods

Cardiomyocyte culture: Human iPSC-Derived Ventricular Cardiomyocytes (ax2505, Axol Bioscience) were thawed on Fibronectin (ax0049)-coated plates according to the manufacturer's protocol, and cultured for the first 24 hours in Cardiomyocyte Maintenance Medium (ax2530) + 10% FBS. The next day cells were switched to serum-free Cardiomyocyte Maintenance Medium. Thereafter, the medium was changed every 2 days.


Plating and recording: After 4 days, cells were dissociated with Axol Unlock (ax0044) and re-plated at 30,000 cells per well on the CardioExcyte 96 Sensor Plate. After one week the following drug compounds were applied: dofetilide (10nM), nifedipine (100nM) and verapamil (200nM).

Immunocytochemistry: Cells were fixed in 3 % PFA, permeabilised with 0.2 % Triton X-100 and blocked with BSA. Primary antibody was incubated overnight 4 °C, and secondary antibody coupled to Alexa Fluor[®] dyes (Invitrogen) applied for 2 hours.

Western blot: 30 µg protein run on 10 % SDS-PAGE gel for 70 minutes at 130 V and transferred to PVDF membrane. Membranes incubated with primary antibody overnight at 4 °C, washed and incubated with secondary antibody for 1 hour.

www.axolbio.com

www.nanion.de

Western blot data confirmed that Axol hiPSC-vCMs express more cardiac troponin-T (cTnT) and α-Actinin than human skin fibroblasts (hSFs). Data from Abigail Robertson, University of Manchester. B; 87 % of Axol hiPSC-vCMs have a ventricular phenotype determined by MLC2v expression, compared to 13 % expressing atrial MLC2a (n=1). Data from Dr Christian Zuppinger, University of Bern.

ures	CE 96
er of channels	96
ance and EFP measurements	\checkmark
	\checkmark
hesion and spreading	\checkmark
ion in standard incubator	\checkmark
nmental control (for use e incubator)	\checkmark
ral resolution (Imp/EFP)	1ms / 0.1ms
ited analysis and recording re	\checkmark
tion with CYBERNANO	\checkmark

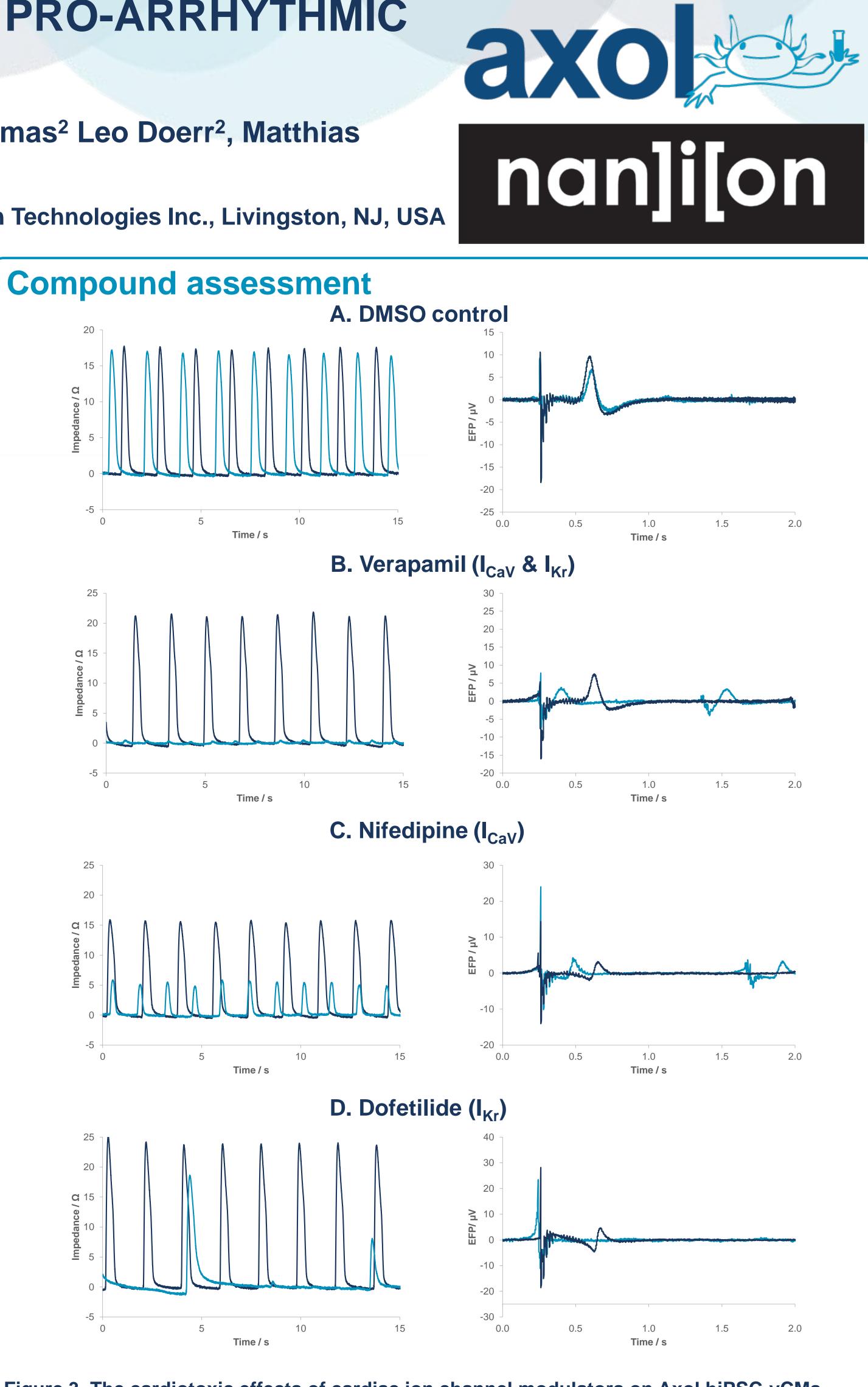


Figure 3. The cardiotoxic effects of cardiac ion channel modulators on Axol hiPSC-vCMs Axol hiPSC-vCMs showed compound-relevant responses (light blue) to known cytotoxic compounds. A; DMSO control, showed no change in EFP but an increase in amplitude. B; verapamil and C; nifedipine, both reduced the impedance amplitude, increased the beat rate and reduced the EFP. D; dofetilide, a selective ion channel blocker for the rapidly activating delayed rectifier potassium channel ($I_{\kappa r}$), resulted in arrhythmic events typical of $I_{\kappa r}$ blockers.

Conclusions

- cardiotoxic compounds.
- and $I_{\kappa r}$ channels in Axol hiPSC-vCMs.
- in used

• Axol hiPSC-vCMs show specific compound-relevant responses to known

Impedance and EFP pharmacology shown here confirms the presence of I_{CaV}

The use of a dual reading technology that is enabled on the CardioExcyte 96 system, allows for the detection of compound effects on both the contractility and electrophysiological properties of a beating network of hiPSC-vCMs.

We have shown that the CardioExcyte 96 (Nanion Technologies) system combination with Human iPSC-Derived Ventricular **Cardiomyocytes** (Axol Bioscience) is an effective system for assessing cardiac pro-arrhythmia using compounds from the CiPA validation toolbox.