

Modelling
Alzheimer's
Disease Using
Stem Cells

Dr Eric Hill

Alzheimer's disease

AMYLOID PLAQUES

amyloid

Drug development

Agent	Target/mechanism	Outcome
Simvastatin	HMG CoA reductase inhibitor	Negative
NSAIDs	Inflammation	Negative
Rosiglitazone	Insulin	Negative
Latrepiridine	Mitochondrial function	Negative
AN1792	Amyloid immunoRX	Negative
Tramiprosate	Amyloid aggregation	Negative
Tarenflurbil	Gamma secretase	Negative
Avagacestat	Gamma secretase	Negative
Bapineuzumab	Amyloid immunoRX	Negative
Solanezumab	Amyloid immunoRX	Negative (+/-)
IVIG	Nonselective immunoRX	Negative
LY2886721	Beta secretase	Negative

Changes in the brain of an AD patient

Stem cell research in my laboratory

The tripartite synapse

Differentiation of NT2.D embryocarcinoma cell line

Do cells display spontaneous and evoked network activity?

Do stem cell derived astrocytes respond to neuronal activity?

Stem cell derived astrocytes contain glycogen

Glutamate induces glucose uptake in stem cell derived astrocytes

Glutamate induces glycolysis and glycogenolysis in stem cell derived cultures

Summary

- NT2 derived cultures are electrophysiologically competent.
- Show evidence of a functional Astrocyte to Neuron lactate shuttle.
- Stem cell derived astrocyte produce glycogen.

Hypometabolism in AD

A Composite Picture of Glucose Metabolism Using PET and the Tracer FDG

The AD patient on the right shows reduced glucose metabolism in temporoparietal cortex, a hallmark of the disease

Viability of cultures following treatment with Aβ1-42

Effects of amyloid on glucose uptake

Effect of Amyloid on glycogen metabolism

Effect of Amyloid on intracellular glucose levels

Effect of Amyloid on lactate metabolism

Effects of amyloid on spontaneous calcium activity in astrocytes

Conclusion

- Aβ induces hypometabolism in both rat and human stem cell derived neurons and astrocytes.
- Disruption of the energy/redox balance within cells
- Altered calcium signalling

What are the long term implications of chronic energy imbalance in the brain?

Electrophysiological characterisation of spontaneous and induced activity

Challenges with disease modelling

Developmental regulation of tau splicing is disrupted in stem cell-derived neurons from frontotemporal dementia patients with the 10 + 16 splice-site mutation in MAPT

Teresa Sposito¹, Elisavet Preza¹, Colin J. Mahoney², Núria Setó-Salvia¹, Natalie S. Ryan², Huw R. Morris³, Charles Arber¹, Michael J. Devine^{1,4}, Henry Houlden¹, Thomas T. Warner¹, Trevor J. Bushell⁵, Michele Zagnoni⁶, Tilo Kunath⁷, Frederick J. Livesey⁸, Nick C. Fox², Martin N. Rossor², John Hardy¹ and Selina Wray^{1,*}

- Control neurons only express the fetal tau isoform (0N3R), even at extended time points of 100 days in vitro.
- Time points of 365 days *in vitro*, reveal a switch in tau splicing to include six tau isoforms as seen in the adult human CNS

Biological age

Patient

Biopsy

Human iPSC-Based Modeling of Late-Onset Disease via Progerin-Induced Aging

Justine D. Miller, ^{1,2,3} Yosif M. Ganat, ^{1,2} Sarah Kishinevsky, ^{1,2} Robert L. Bowman, ^{3,4} Becky Liu, ^{1,2} Edmund Y. Tu, ^{1,2} Pankaj K. Mandal, ^{6,7} Elsa Vera, ^{1,2} Jae-won Shim, ^{1,2} Sonja Kriks, ^{1,2} Tony Taldone, ⁵ Noemi Fusaki, ^{8,8} Mark J. Tomishima, ^{1,2} Dimitri Krainc, ^{1,0} Teresa A. Milner, ^{1,1,2} Derrick J. Rossi, ^{6,7} and Lorenz Studer ^{1,2,8}

Direct reprogramming

Directly Reprogrammed Human Neurons Retain Aging-Associated Transcriptomic Signatures and Reveal Age-Related Nucleocytoplasmic Defects

Acknowledgements

Prof Michael Coleman
Dr David Nagel
Dr Elizabeth Woehrling
Dr Rhein Parri
Dr Marta Tarczyluk
Dr Erin Tse

National Centre for the Replacement Refinement & Reduction of Animals in Research

Astrocytes and neurons couple glucose metabolism to antioxidant defence

Biochemical Journal 2012 443, 3-11 - Seila Fernandez-Fernandez, Angeles Almeida and Juan P. Bolaños

Aston University
Life & Health Sciences