

The use of iPSC-derived cells (& primary cells) as *in vitro* models for toxicity screening

15th March 2016 SOT New Orleans Booth #419

Drug Discovery & Development " A long, risky road"

Need for early toxicity testing and improved prediction

Overview

iPSC-Derived Neural Stem Cells

Neurotoxicity in drug safety testing

<u>Functional Integrity</u> Gene Expression, Electrophysiology, Multi-Electrode Array, Effects of developmental neurotoxin

iPSC-Derived Cardiomyocytes

Cardiotoxicity in drug safety testing

Functional Integrity

Express major cardiac-selective markers Beat spontaneously in culture, Ca2+ imaging

Electrophysiology Pharmacology

Hepatocytes

Hepatotoxicity in drug safety testing

Metabolism studies, Hepatotoxicity studies, Genotoxicity micronucleus studies

iPSC-Derived Neural Cells

The way forward for more predictive toxicity testing

Neurotoxicity in Drug Safety Testing

Functional Integrity

Gene Expression Protein Expression Electrophysiology Multi-Electrode Array Whole Cell Patch

Disease Modeling

Responsive to drug treatments Expression diseaserelevant phenotypes Patch clamp

Gene expression

Biochemical analysis

Multi-Electrode Array

> Neurite outgrowth

General Characterization of NSCs

We confirmed expression of neural stem cell markers like SOX2, PAX6, Ki67 and ZO1

Characterization of Cortical Neurons

Wer Idrangeriatomie brate compliance under manual stight of the stight o

Functional Characterization

We confirmed the functional integrity by looking into neural networks with increased neurite length and branching in cortical neurons

Essen Bioscience Ltd using the IncuCyte NeuroTrack platform

Voltage-gated K+ channels

Voltage-gated Na+ channels

10 pA

, ooo <u>a</u> a a

0.1_§0

10

0

-10-

-20-

-30-

-40-

-50

charge density (pA/µF)

**

00

49-63

(ephys)

0 ъ

ηĄ

12.5 ms

॒॒॒॑ॾ॒॒॒ॾ॒ॾ_{ढ़}ॾ॒ड़॒ॾ॒

0

63-77

Rheobase/AP firing

50 mV

2 s

63-77

recordings with mEPSCs (%)

100-

40-

20-

105

100

95 ž

90

85

80

49-63

49-63

(ephys)

AP amplitude

Spontaneous activity

Data from our collaborators

Neurotoxin Effects on iPSC-Derived Neural Stem Cells

Data provided by Dr Kisby's lab by Michael Czulinski and Morgan Florek

iPSC-Derived Cortical Neurons as axolicity in-Vitro Models for Drug Screening

Alpha Med Scientific Inc 300 days culture on the MEA dish

iPSC-derived neural cells used to demonstrate LTP & LTD on an MEA platform

Biochemical and Biophysical Research Communications 469 (2016) 856-862

294 days culture

on the MEA dish

Contents lists available at ScienceDirect

Biochemical and Biophysical Research Communications

journal homepage: www.elsevier.com/locate/ybbrc

Induction of long-term potentiation and depression phenomena in human induced pluripotent stem cell-derived cortical neurons

A. Odawara ^{a, c, 1}, H. Katoh ^{a, 1}, N. Matsuda ^b, I. Suzuki ^{a, b, *}

iPSC-Derived Neurons Show Potential for Synaptic Plasticity

Induction of long-term potentiation (LTP) and long-term depression (LTD) by high-frequency stimulation (HFS) (112 DIV)

iPSC-Derived Neurons Respond to Drug Application

iPSC-derived neurons in response to drug application:

- ★ Synapse agonists (Bicuculline & Kainin acid)
 - Increase in firing
 - No change over days in culture
- Synaptic antagonists (CNQX & AP5)
 - Inhibit firing
 - Decrease with days in culture (100 v 240)

axo

Induction of Epileptiform Activity & **axo** Effects of Anti-Epilepsy Drugs

- Induced epilepsy by adding PTZ (pentylentetrazole) (>1mM)
- Anti-epilepsy drugs, phenytoin & sodium valproate (VPA) were able to reverse the high frequency synchronized bursts evoked with PTZ

These results suggested that long-term electrophysiological measurements in iPSCderived neurons using a MEA system may be beneficial for **drug screening applications**

Neurotoxicity Summary

- iPSC-derived NSC
 - Express neural markers at gene & protein level
 - Excellent neurite outgrowth
 - Electrophysiologically functional
 - Capable of synaptic plasticity
- iPSC-derived NSCs are more sensitive to the developmental neurotoxin MAM & can replace routinely cell lines use for screening for neurotoxins
- Responsive to drug treatment
- Can be cultured long-term
- Physiologically relevant tool for drug discovery & toxicity studies

iPSC-Derived Cardiomyocytes

A way forward for more predictive toxicity testing

Cardiotoxicity in Drug Safety Testing **axo**

<u>Electrophysiology</u>

Contractility QT prolongation Na⁺ & Ca²⁺ channels Pharmacology Patch clamp

Impedance

Biochemical analysis

Functional Integrity

Ca²⁺ signaling Morphology Stress & toxic response markers Immunocytochemistry

Multi-electrode Array

- Benefits of a synchronously beating monolayer
 - React as a unit syncytium of cells, electrically coupled
- Robust & reproducible
- Large quantities available
- High purity
- Functional on xCelligence, for calcium imaging & for electrophysiology

iPSC-Derived Cardiomyocytes Showing Synchronized Beating

Benefits of a synchronously beating monolayer

- Electrically coupled
- Physiologically relevant to human heart •

axo

Functional iPSC-Derived Cardiomyocytes

Protein Expression

Human iPSC-CMs (hiPSC-CMs) express more cardiac troponin-T (cTnT) & α-Actinin than human skin fibdbl æts (hSFs)

hiPSC-CM

Data from Abigail Robertson from University of Manchester

hSF

0.0

hSF

hiPSC-CM

Signaling & Stress-Response

Data from Dr Christian Zuppinger

Telethonin (green) suggested signalling & stress-response functions is present iPSC-CMs with a pattern of sarcomeric striation observed in patched inside some cells. (All actin, red)

Ankyrin repeat domain 1 (ANKRD1) (green) could be used a marker of toxic stress, showed similar expression to telethonin (All Actin, red)

Methods, Tools & Recording Parameters • Patched 7

- Patched 7-14 days post seeding
 - Action potentials (AP) recorded from syncytial cells (field stimulation)
 - Perforated patch clamp (100 µg/ml gramicidin)
- Pharmacological tools:

Compound	lon channel
Carbachol	I _{KACh}
ттх	I _{Nav}
Mexiletine	I _{Nav}
Nifedipine	I _{Cav}
Verapamil	I _{Cav} & I _{Kr}
Dofetilide	I _{Kr}

AP Parameters

n = 32 control recordings

Cells paced at either 0.5 or 1Hz

Pure Population Ventricular Cardiomyocytes

• Negligible effect on AP parameters (n=8)

metrion

- Positive effect of carbachol observed with atrial-derived HL-1 cells
- Suggests majority of cells do not display an atrial phenotype

Ventricular myosin light chain (87%) and atrial myosin light chain (13%)

(Does not include nodal population)

TTX & Mexiletine (I_{Nav})

• Significantly prolonged the TTP

e

- Negligible effect on other AP parameters
- Similar effect observed with Mexiletine

Nifedipine (I_{Cav})

- Significantly reduced the peak voltage
- Significant shortening of APD20, APD50 & APD90

- Significant reduction to the peak voltage (all concentrations)
- Significant reduction in TTP(1µM)

metrion

Significant prolongation of APD20 & 50 (1µM) but not APD90

Dofetilide (I_{Kr})

- Significant prolongation to APD90
- Negligible effect on other AP parameters

Effect of Dofetilide on Calcium Imaging

Without treatment

Using Fluo-4 calcium dye to measure calcium transients

Data provided by Dr Frances Brook at Oxford University

iPSC-Derived Cardiomyocytes in **axol** 3D culture

Cardiosperoids are essential for successful co-culturing of iPSC-derived cardiomyocytes & endothelial cells

Dr Christian Zuppinger, University of Bern

In-Vitro Models for Cardiotoxicity Studies

axo

iPSC-derived cardiomyocytes responded to both compounds in a dose-dependent fashion & strongly indicates the clinical relevance of these cells & their utility for drug screening applications

Cardiotoxicity Summary

iPSC-derived cardiomyocytes (CMs) could be used in cardiotoxicity & cardiomyocyte pharmacology studies

- iPSC-derived CMs express definitive cardiac markers & form organized sarcomeres
- iPSC-derived CMs show synchronized beating as a monolayer culture at high confluency
- Electrophysiological measurement of APs, pharmacology consistent with expression of INav, ICav & IKr
- Functional on xCelligence & for calcium imaging

Hepatocytes

A way forward for more predictive toxicity testing

Hepatotoxicity in Drug Safety Testing

We need:

- Reliable genotoxicity testing, predictive hepatotoxicity screens
- Cells expressing adult hepatocyte markers & no fetal phenotype
- Large batch sizes from the same donor for consistency for toxicity and high-throughput screening

Human primary hepatocytes have much greater functionality than iPSC-derived hepatocytes

Assay-Ready Expanded (ARE) Hepatocytes

- Expanded hepatocytes that retain many characteristics of primary human hepatocytes
- Metabolically functional & express cytochrome P450 (CYP) enzymes

Cobblestone morphology

Comparison of the Phase I CYP enzyme activity between ARE Hepatocytes, ARE Hepatocytes (CYP2D6 Overexpressing) & HepaRG cells

Assay-Ready Expanded (ARE) Hepatocytes

(B) CYP2B6 inhibition by ticlopidine

Compound uptake studies

Inhibition Studies

150

(A) CYP1A2 inhibition by α-naphthoflavone

Expression of hepatic transporter genes in primary hepatocytes, ARE hepatocytes & HepG2 cells

Reproducible CYP induction & inhibition in a donor-specific manner by prototypical inducers/inhibitors

Assay-Ready Expanded (ARE) Hepatocytes

Genotoxicity studies

Hepatotoxicity studies

axol

Increasing cyclophosphamide concentration affects the percentage of cells with micronuclei (% MN) & cell viability

Sensitivity to hepatotoxic compounds

Assay-Ready Expanded (ARE) Liver Sinusoidal Endothelial Cells

ARE Liver Sinusoidal Endothelial Cells are primary liver endothelial cells that have been expanded *in-vitro*

3D cultures can be generated by co-culturing with ARE Hepatocytes

Low Density Lipoprotein (LDL) uptake in ARE Liver Sinusoidal Endothelial cells. LDL (green), DAPI (blue)

Hepatotoxicity Summary

- ARE Hepatocytes display a primary liver cell phenotype
- ARE Hepatocytes are metabolic competent cells expressing liver specific transporters and metabolizing enzymes
- Large batch sizes from the same donor for consistency for toxicity & high-throughput screening
- Sensitivity to hepatotoxic compounds & reliable genotoxicity testing
- ARE Hepatocytes can be co-cultured with liver sinusoidal endothelial cells

Conclusion

Our aim is to provide physiologically relevant *in-vitro* disease models for drug discovery & toxicity studies

Axol iPSC-derived NSC

Express neural markers at gene and protein level

Excellent neurite outgrowth

Electrophysiologically functional

Capable of synaptic plasticity

Axol iPSC-derived Cardiomyocytes

Expressing definitive cardiac markers and form organized sarcomeres Synchronous beating monolayers, electrophysiologically functional Functional on xCelligence & for calcium imaging

ARE Hepatocytes

Display a primary liver cell phenotype

Metabolic competent cells expressing liver specific transporters and metabolizing enzymes

Sensitivity to hepatotoxic compounds & reliable genotoxicity testing

Thank you! SOT Booth #419

your discovery stems from here

For more information please contact us at: <u>support@axolbio.com</u>

> Or visit: www.axolbio.com